CHAPTER 1

THE 8051 MICROCONTROLLERS
Microcontroller vs. General-Purpose Microprocessor

- General-purpose microprocessors have
 - No RAM
 - No ROM
 - No I/O ports

- Microcontrollers have
 - CPU (microprocessor)
 - RAM
 - ROM
 - I/O ports
Microcontroller vs. General-Purpose Microprocessor (cont.)

- Timer
- ADC and other peripherals

Figure 1-1. Microprocessor System Contrasted With Microcontroller System
Microcontroller vs. General-Purpose Microprocessor (cont.)

- General-purpose microprocessors
 - Must add RAM, ROM, I/O ports, and timers externally to make them functional
 - Make the system bulkier and much more expensive
 - Have the advantage of versatility on the amount of RAM, ROM, and I/O ports
Microcontroller vs. General-Purpose Microprocessor (cont.)

- Microcontroller
 - The fixed amount of on-chip ROM, RAM, and number of I/O ports makes them ideal for many applications in which cost and space are critical.
 - In many applications, the space it takes, the power it consumes, and the price per unit are much more critical considerations than the computing power.
Microcontrollers for Embedded Systems

- An embedded product uses a microprocessor (or microcontroller) to do one task and one task only
 - There is only one application software that is typically burned into ROM
- A PC can be used for any number of applications
 - It has RAM memory and an operating system that loads a variety of applications into RAM and lets the CPU run them
Microcontrollers for Embedded Systems (cont.)

- A PC contains or is connected to various embedded products
 - Each one peripheral has a microcontroller inside it that performs only one task

- Home
 - Appliances, telephones, security systems, TVs, video games, cellular phones, camera,

- Office
 - Telephones, computers, fax, laser printer
Very often the terms embedded processor and microcontroller are used interchangeably.

One of the most critical needs of an embedded system is to decrease power consumption and space:
- The trend is to integrate more functions on the CPU chip and let designer decide which features he/she wants to use.
Criteria for Choosing a Microcontroller

- Meeting the computing needs of the task at hand efficiently and cost effectively
 - Speed, Packaging, Power consumption
 - The amount of RAM and ROM on chip
 - The number of I/O pins and the timers on chip
 - How easy to upgrade to higher performance or lower power-consumption versions
 - Cost per unit
Criteria for Choosing a Microcontroller (cont.)

- Availability of software development tools, such as compilers, assemblers, and debuggers
- Wide availability and reliable sources of the microcontroller
 - The 8051 family has the largest number of diversified (multiple source) suppliers
 - Intel (original), Atmel, Philips/Signetics, AMD, Infineon (formerly Siemens), Matra, Dallas Semiconductor/Maxim
8051 Microcontroller

Intel introduced 8051, referred as MCS-51, in 1981

- The 8051 is an 8-bit processor
- The CPU can work on only 8 bits of data at a time

The 8051 had:
- 128 bytes of RAM, 4K bytes of on-chip ROM
- One serial port, four I/O ports (8 bits wide)
- Two timers, 6 interrupt sources
8051 Microcontroller (cont.)

- The 8051 became widely popular after allowing other manufactures to make and market any flavor of the 8051
 - Remaining code-compatible

<table>
<thead>
<tr>
<th>Table 1-3: Features of the 8051</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feature</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>ROM</td>
</tr>
<tr>
<td>RAM</td>
</tr>
<tr>
<td>Timer</td>
</tr>
<tr>
<td>I/O pins</td>
</tr>
<tr>
<td>Serial port</td>
</tr>
<tr>
<td>Interrupt sources</td>
</tr>
</tbody>
</table>

Note: ROM amount indicates on-chip program space.
Figure 1-2. Inside the 8051 Microcontroller Block Diagram
8051 Family

- The 8051 is a subset of the 8052
- The 8031 is a ROM-less 8051
 - Add external ROM to it
 - You lose two ports,
 - One for the address bus, the other for the data bus
 - Leave only 2 ports for I/O operations

<table>
<thead>
<tr>
<th>Table 1-4: Comparison of 8051 Family Members</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feature</td>
</tr>
<tr>
<td>-------------------------------</td>
</tr>
<tr>
<td>ROM (on-chip program space in bytes)</td>
</tr>
<tr>
<td>RAM (bytes)</td>
</tr>
<tr>
<td>Timers</td>
</tr>
<tr>
<td>I/O pins</td>
</tr>
<tr>
<td>Serial port</td>
</tr>
<tr>
<td>Interrupt sources</td>
</tr>
</tbody>
</table>